Second messenger-activated calcium influx in rat peritoneal mast cells

J Physiol. 1989 Nov:418:105-30. doi: 10.1113/jphysiol.1989.sp017830.

Abstract

1. To study the regulation of calcium influx in non-excitable cells, membrane currents of rat peritoneal mast cells were recorded using the whole-cell patch-clamp technique. At the same time, intracellular calcium concentration ([Ca2+]i) was monitored via the fluorescent calcium-indicator dye Fura-2, which was loaded into cells by diffusion from the patch pipette. 2. Stimulation of mast cells with secretagogues, such as compound 48/80 or substance P, caused release of Ca2+ from internal stores. In addition, external agonists also induced influx of external calcium in 26% of the cells investigated. The agonist-stimulated Ca2+ influx was increased during membrane hyperpolarization and was associated with small whole-cell currents. 3. Likewise, internal application of inositol 1,4,5-trisphosphate (Ins1,4,5P3:0.5-10 microM) elevated [Ca2+]i due both to release of Ca2+ from internal stores and to influx of external calcium. The Ins1,4,5P3-induced influx was greater at more negative membrane potentials, suggesting that Ins1,4,5P3 opened a pathway through which calcium could enter at a rate governed by its electrochemical driving force. 4. Inositol 1,3,4,5-tetrakisphosphate (Ins1,3,4,5P4) did not induce Ca2+ influx by itself nor did it facilitate or enhance Ins1,4,5P3-induced Ca2+ entry. Calcium influx was also induced by inositol 2,4,5-trisphosphate. Since this inositol phosphate is a poor substrate for Ins1,4,5P3 3-kinase it seems unlikely that Ins1,3,4,5P4 plays a role in the regulation of the Ca2(+)-influx pathway in mast cells. 5. The Ins1,4,5P3-induced Ca2+ influx was associated with whole-cell currents of 1-2 pA or less, with no channel activity detectable in whole-cell recordings. The small size of the whole-cell current suggests either that the Ins1,4,5P3-dependent influx occurs via small-conductance channels that are highly calcium specific or that the influx is not via ion channels. 6. Agonist stimulation also activated large-conductance (ca 50 pS) cation channels, through which divalent cations could permeate; thus, these channels represent a second pathway for Ca2+ influx. The slow speed of activation of the channels by agonists, their activation by internal guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S), and the inhibition of agonist activation by internal guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S) all suggest that the 50 pS channels are regulated by a second messenger and/or a GTP-binding protein. The activity of the 50 pS channel in mast cells is not sensitive to either Ins1,4,5P3 or Ins1,3,4,5P4. Activity of the channel was inhibited by elevated [Ca2+]i.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Channels / drug effects
  • Calcium Channels / metabolism
  • Electric Conductivity
  • In Vitro Techniques
  • Inositol 1,4,5-Trisphosphate / pharmacology
  • Mast Cells / drug effects
  • Mast Cells / metabolism*
  • Membrane Potentials
  • Peritoneal Cavity / cytology
  • Rats
  • Second Messenger Systems / drug effects
  • Second Messenger Systems / physiology*
  • p-Methoxy-N-methylphenethylamine / pharmacology

Substances

  • Calcium Channels
  • p-Methoxy-N-methylphenethylamine
  • Inositol 1,4,5-Trisphosphate
  • Calcium