Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1989 Nov 28;28(24):9385-91.

Interplay of phosphorylation and dephosphorylation in vision: protein phosphatases of bovine rod outer segments.

Author information

  • 1Department of Biochemistry, University of Southampton, Bassett Crescent East, England.

Abstract

Two types of protein phosphatases were identified in carefully prepared bovine rod outer segments (ROS). Extraction of the ROS with a medium-salt buffer solubilized protein phosphatase activity that was mainly type 2A, since it was active toward phosphorylase a in the absence of divalent cations, was not retained by heparin-Sepharose, dephosphorylated the alpha-subunit of phosphorylase kinase faster that the beta-subunit, and was unaffected by inhibitor 2. Further extraction of the resulting membranes with a high-salt buffer solubilized additional phosphatase activity which was predominantly type 1, since it was retained by heparin-Sepharose and was blocked by inhibitor 2. The molecular mass of the type 2A phosphatase estimated by gel permeation chromatography on Superose 12 was 100 kDa, suggesting it may be the 2A2 form. Only the ROS type 2A phosphatase dephosphorylated opsin and rhodopsin efficiently. Concordant with this finding, the purified catalytic subunit of protein phosphatase 2A from rabbit skeletal muscle dephosphorylated opsin efficiently, while the type 1 catalytic subunit isolated from this tissue was inactive. Together, the results suggest that the ROS type 2A protein phosphatase plays an important role in regenerating rhodopsin from the various phosphorylated species in vivo. The activity of the enzyme per retina (approximately 85 pmol of Pi released/min) is comparable to that of rhodopsin kinase (100 pmol of phosphate transferred/min).

PMID:
2558719
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk