Gas-phase acidities of nitrated azoles as determined by the extended kinetic method and computations

J Phys Chem A. 2015 Jan 15;119(2):395-402. doi: 10.1021/jp5110533. Epub 2014 Dec 31.

Abstract

Making use of the extended kinetic method and the alternative method for data analysis, we have experimentally determined ΔH°acid (kcal/mol) for six mononitrated azole species (2-nitropyrrole = 337.0, 3-nitropyrrole = 335.8, 3-nitropyrazole = 330.5, 4-nitropyrazole = 329.5, 2-nitroimidazole = 327.4, and 4-nitroimidazole = 325.0). We report an absolute uncertainty of ±2.2 kcal/mol that arises from the uncertainties of the reference acids; the relative values are known within 0.4 kcal/mol. Combining these experimental ΔH°acid values with ΔS°acid values calculated at the B3LYP/aug-cc-pVTZ level of theory, we report ΔG°acid (kcal/mol) for the nitroazoles (2-nitropyrrole = 329.4, 3-nitropyrrole = 328.4, 3-nitropyrazole = 323.1, 4-nitropyrazole = 322.0, 2-nitroimidazole = 319.7, and 4-nitroimidazole = 317.6); the absolute uncertainties are ±2.4 kcal/mol. In addition to the experimental studies, we have computationally investigated the gas-phase acidities and electron affinities of the azoles in this work, as well as higher-order aza- and dinitro-substituted azoles. We discuss trends in the stabilities of the deprotonated azoles based on aza substitution and nitro group placement. 4-Nitroimidazole has already found use as the anionic component in ionic liquids, and we propose that the additional nitrated azolate ions are potential candidates for the anionic component of ionic liquids.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Azoles / chemistry*
  • Computer Simulation
  • Dimerization
  • Gases / chemistry*
  • Hydrogen / chemistry
  • Kinetics
  • Molecular Structure
  • Nitrates / chemistry*
  • Protons

Substances

  • Azoles
  • Gases
  • Nitrates
  • Protons
  • Hydrogen