Send to:

Choose Destination
See comment in PubMed Commons below
Endocrinology. 1989 Nov;125(5):2670-6.

Melatonin signal transduction in hamster brain: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein.

Author information

  • 1Laboratory of Developmental Chronobiology, Massachusetts General Hospital, Boston 02114.


Melatonin signal transduction was examined in median eminence/pars tuberalis (ME/PT) explants from Djungarian hamsters. High affinity melatonin receptors in hamster ME/PT were first quantified by in vitro autoradiography using the potent melatonin agonist 125I-labeled melatonin ([125I]MEL). Scatchard analysis of [125I]MEL binding in ME/PT revealed high affinity receptors [dissociation constant (Kd) = 2.75 X 10(-11) M]. [125I]MEL binding was markedly reduced by guanine nucleotides; treatment with the nonhydrolyzable GTP analog guanosine 5'-O-(3-thiotriphosphate) caused a 10-fold decrease in receptor affinity. Melatonin (10 nM) significantly inhibited forskolin-stimulated cAMP accumulation in ME/PT, but not in pituitary or pineal glands. In ME/PT explants, melatonin and 6-chloromelatonin inhibited forskolin-stimulated cAMP accumulation in a dose-dependent manner with similar potency (significant inhibition for each at concentrations greater than or equal to 100 pM). Serotonin significantly inhibited forskolin-stimulated cAMP levels only at doses greater than or equal to 100 microM. Inhibition of [125I]MEL binding in ME/PT by these three indolamines paralleled that determined for inhibition of forskolin-stimulated cAMP accumulation. Pertussis toxin treatment (1 microgram/ml) blocked the ability of melatonin (10 nM) to inhibit forskolin-stimulated cAMP accumulation and significantly reduced [125I]MEL binding. Pertussis toxin ADP-ribosylated the alpha-subunits of at least two guanine nucleotide-binding proteins in ME/PT explants with molecular weights of approximately 40 K. Melatonin did not increase phosphodiesterase activity in ME/PT explants. The results strongly suggest that a signal transduction pathway for melatonin in mammals involves inhibition of adenylyl cyclase by a pertussis toxin-sensitive guanine nucleotide-binding protein.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk