Effect of hydrophobic interactions on the folding mechanism of β-hairpins

J Phys Chem B. 2014 Dec 11;118(49):14234-42. doi: 10.1021/jp506658x. Epub 2014 Nov 25.

Abstract

Hydrophobic interactions are essential in stabilizing protein structures. How they affect the folding pathway and kinetics, however, is less clear. We used time-resolved infrared spectroscopy to study the dynamics of hydrophobic interactions of β-hairpin variants of the sequence Trpzip2 (SWTWENGKWTWK-NH2) that is stabilized by two cross-strand Trp-Trp pairs. The hydrophobicity strength was varied by substituting the tryptophans pairwise by either tyrosines or valines. Relaxation dynamics were induced by a laser-excited temperature jump, which separately probed for the loss of the cross-strand β-hairpin interaction and the rise of the disordered structure. All substitutions tested result in reduced thermal stability, lower transition temperatures, and faster dynamics compared to Trpzip2. However, the changes in folding dynamics depend on the amino acid substituted for Trp. The aromatic substitution of Tyr for Trp results in the same kinetics for the unfolding of sheet and growth of disorder, with similar activation energies, independent of the substitution position. Substitution of Trp with a solely hydrophobic Val results in even faster kinetics than substitution with Tyr but is additionally site-dependent. If the hairpin has a Val pair close to its termini, the rate constants for loss of sheet and gain of disorder are the same, but if the pair is close to the turn, the sheet and disorder components show different relaxation kinetics. The Trp → Val substitutions reveal that hydrophobic interactions alone weakly stabilize the hairpin structure, but adding edge-to-face aromatic interaction strengthens it, and both modify the complex folding process.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Hydrophobic and Hydrophilic Interactions
  • Molecular Sequence Data
  • Mutation
  • Protein Folding
  • Protein Structure, Secondary
  • Proteins / chemistry*
  • Proteins / genetics
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Proteins
  • Trpzip2 protein