A20--an omnipotent protein in the liver: prometheus myth resolved?

Adv Exp Med Biol. 2014:809:117-39. doi: 10.1007/978-1-4939-0398-6_8.

Abstract

Contribution of NF-kappaB inhibitory and ubiquitin-editing A20 (tnfaip3) to the liver's protective response to injury, particularly to its anti-inflammatory armamentarium, is exemplified by the dramatic phenotype of A20 knockout mice that die prematurely of unfettered inflammation predominantly in the liver. A number of additional studies originating from our laboratory and others clearly demonstrate that A20 is part of the liver response to injury and resection. Upregulation of A20 in hepatocytes serves a broad hepatoprotective goal through combined anti-inflammatory, anti-apoptotic, anti-oxidant and pro-regenerative functions. The molecular basis for A20's hepatoprotective functions were partially resolved and include blockade of NF-kappaB activation in support of its anti-inflammatory function, inhibition of pro-caspase 8 cleavage in support of its anti-apoptotic function, increasing Peroxisome Proliferator Activated Receptor alpha (PPARalpha) expression in support of its anti-oxidant function, and decreasing Cyclin Dependent Kinase Inhibitor p21 while boosting IL-6/STAT3 proliferative signals as part of its pro-regenerative function. In experimental animal models, overexpression of A20 in the liver protects from radical acute fulminant toxic hepatitis, lethal hepatectomy, and severe liver ischemia reperfusion injury (IRI), and allows successful engraftment of marginal liver grafts. Conversely, partial loss of A20, as in A20 heterozygote mice, significantly impairs liver regeneration and damage, which confers high lethality to an otherwise safe procedure i.e., 2/3 partial hepatectomy. This is the ultimate proof of the physiologic role of A20 in liver regeneration and repair. In recent work, A20's functions in the liver have expanded to encompass regulation of lipid and glucose metabolism, unlocking a whole new set of metabolic diseases that could be affected by A20. In this chapter we review all available data regarding A20's physiologic role in the liver, and Reflect on the clinical implication of these findings with regard to A20-based therapies in the context of liver transplantation, resection of large liver tumors, liver fibrosis, and metabolic liver diseases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Acute Disease
  • Animals
  • Chronic Disease
  • DNA-Binding Proteins / metabolism
  • DNA-Binding Proteins / physiology*
  • Disease Models, Animal
  • Humans
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Intracellular Signaling Peptides and Proteins / physiology*
  • Liver / metabolism*
  • Liver / physiopathology
  • Liver Diseases / etiology
  • Liver Diseases / physiopathology
  • Liver Regeneration
  • Nuclear Proteins / metabolism
  • Nuclear Proteins / physiology*
  • Tumor Necrosis Factor alpha-Induced Protein 3

Substances

  • DNA-Binding Proteins
  • Intracellular Signaling Peptides and Proteins
  • Nuclear Proteins
  • TNFAIP3 protein, human
  • Tumor Necrosis Factor alpha-Induced Protein 3