Format

Send to:

Choose Destination
See comment in PubMed Commons below
Front Mol Neurosci. 2014 Jul 18;7:67. doi: 10.3389/fnmol.2014.00067. eCollection 2014.

MicroRNAs targeting Nicastrin regulate Aβ production and are affected by target site polymorphisms.

Author information

  • 1Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec QC, Canada ; Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec QC, Canada ; Institut Pasteur de Lille, INSERM U744, Université Lille Nord de France Lille (Nord), France.
  • 2Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec QC, Canada ; Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec QC, Canada.
  • 3Division of Neurology, Department of Medicine, University of British Columbia Vancouver, QC, Canada.
  • 4Institut Pasteur de Lille, INSERM U744, Université Lille Nord de France Lille (Nord), France.

Abstract

Despite the growing number of genome-wide association studies, the involvement of polymorphisms in microRNA target sites (polymiRTS) in Alzheimer's disease (AD) remains poorly investigated. Recently, we have shown that AD-associated single-nucleotide polymorphisms (SNPs) present in the 3' untranslated region (3'UTR) of amyloid precursor protein (APP) could directly affect miRNA function. In theory, loss of microRNA (miRNA) function could lead to risk for AD by increasing APP expression and Aβ peptide production. In this study, we tested the hypothesis that Nicastrin, a γ-secretase subunit involved in Aβ generation, could be regulated by miRNAs, and consequently affected by 3'UTR polymorphisms. Bioinformatic analysis identified 22 putative miRNA binding sites located in or near Nicastrin 3'UTR polymorphisms. From these miRNA candidates, six were previously shown to be expressed in human brain. We identified miR-24, miR-186, and miR-455 as regulators of Nicastrin expression, both in vitro and under physiological conditions in human cells, which resulted in altered Aβ secretion. Using luciferase-based assays, we further demonstrated that rs113810300 and rs141849450 SNPs affected miRNA-mediated repression of Nicastrin. Notably, rs141849450 completely abolished the miR-455-mediated repression of Nicastrin. Finally, the rs141849450 variant was identified in 1 out of 511 AD cases but not in 631 controls. These observations set the stage for future studies exploring the role of miRNAs and 3'UTR polymorphisms in AD.

KEYWORDS:

Alzheimer’s disease; Nicastrin; miR-186; miR-455; microRNA; single-nucleotide polymorphism

PMID:
25100943
[PubMed]
PMCID:
PMC4103510
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers Media SA Icon for PubMed Central
    Loading ...
    Write to the Help Desk