Format

Send to

Choose Destination
See comment in PubMed Commons below
Diabetes. 2015 Jan;64(1):213-25. doi: 10.2337/db14-0352. Epub 2014 Aug 4.

High tissue glucose alters intersomitic blood vessels in zebrafish via methylglyoxal targeting the VEGF receptor signaling cascade.

Author information

  • 1Department of Vascular Biology and Tumor Angiogenesis, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.
  • 2Department of Vascular Biology and Tumor Angiogenesis, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  • 3Department of Medicine and Clinical Chemistry, Heidelberg University, Mannheim, Germany.
  • 4Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  • 55th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  • 6Department of Vascular Biology and Tumor Angiogenesis, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany jens.kroll@medma.uni-heidelberg.de.

Abstract

Hyperglycemia causes micro- and macrovascular complications in diabetic patients. Elevated glucose concentrations lead to increased formation of the highly reactive dicarbonyl methylglyoxal (MG), yet the early consequences of MG for development of vascular complications in vivo are poorly understood. In this study, zebrafish were used as a model organism to analyze early vascular effects and mechanisms of MG in vivo. High tissue glucose increased MG concentrations in tg(fli:EGFP) zebrafish embryos and rapidly induced several additional malformed and uncoordinated blood vessel structures that originated out of existing intersomitic blood vessels (ISVs). However, larger blood vessels, including the dorsal aorta and common cardinal vein, were not affected. Expression silencing of MG-degrading enzyme glyoxalase (glo) 1 elevated MG concentrations and induced a similar vascular hyperbranching phenotype in zebrafish. MG enhanced phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 and its downstream target Akt/protein kinase B (PKB). Pharmacological inhibitors for VEGF receptor 2 and Akt/PKB as well as MG scavenger aminoguanidine and glo1 activation prevented MG-induced hyperbranching of ISVs. Taken together, MG acts on smaller blood vessels in zebrafish via the VEGF receptor signaling cascade, thereby describing a new mechanism that can explain vascular complications under hyperglycemia and elevated MG concentrations.

© 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk