Send to:

Choose Destination
See comment in PubMed Commons below
J Assoc Res Otolaryngol. 2014 Dec;15(6):961-74. doi: 10.1007/s10162-014-0481-9. Epub 2014 Jul 22.

Cochlin in normal middle ear and abnormal middle ear deposits in DFNA9 and Coch (G88E/G88E) mice.

Author information

  • 1Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 160, Boston, MA, 02115, USA,


DFNA9 sensorineural hearing loss and vestibular disorder, caused by mutations in COCH, has a unique identifying histopathology including prominent acellular deposits in cochlear and vestibular labyrinths. A recent study has shown presence of deposits also in middle ear structures of DFNA9-affected individuals (McCall et al., J Assoc Res Otolaryngol 12:141-149, 2004). To investigate the possible role of cochlin in the middle ear and in relation to aggregate formation, we evaluated middle ear histopathology in our Coch knock-in (Coch (G88E/G88E) ) mouse model, which harbors one of the DFNA9-causative mutations. Our findings reveal accumulation of acellular deposits in the incudomalleal and incudostapedial joints in Coch (G88E/G88E) mice, similar to those found in human DFNA9-affected temporal bones. Aggregates are absent in negative control Coch (+/+) and Coch (-/-) mice. Thickening of the tympanic membrane (TM) found in humans with DFNA9 was not appreciably detected in Coch (G88E/G88E) mice at the evaluated age. We investigated cochlin localization first in the Coch (+/+)mouse and in normal human middle ears, and found prominent and specific cochlin staining in the incudomalleal joint, incudostapedial joint, and the pars tensa of the TM, which are the three sites where abnormal deposits are detected in DFNA9-affected middle ears. Cochlin immunostaining of Coch (G88E/G88E) and DFNA9-affected middle ears showed mutant cochlin localization within areas of aggregates. Cochlin staining was heterogeneous throughout DFNA9 middle ear deposits, which appear as unorganized and overlapping mixtures of both eosinophilic and basophilic substances. Immunostaining for type II collagen colocalized with cochlin in pars tensa of the tympanic membrane. In contrast, immunostaining for type II collagen did not overlap with cochlin in interossicular joints, where type II collagen was localized in the region of the chondrocytes, but not in the thin layer of the articular surface of the ossicles nor in the eosinophilic deposits with specific cochlin staining.

[PubMed - in process]
[Available on 2015-12-01]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk