Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2014 Jul 30;136(30):10640-4. doi: 10.1021/ja505941b. Epub 2014 Jul 21.

C₅-symmetric chiral corannulenes: desymmetrization of bowl inversion equilibrium via "intramolecular" hydrogen-bonding network.

Author information

  • 1RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Abstract

Because of a rapid conformational inversion, bowl-shaped C5-symmetric corannulenes, though geometrically chiral, have not been directly resolved into their enantiomers. However, if this inversion equilibrium can be desymmetrized, chiral corannulenes enriched in either enantiomer can be obtained. We demonstrated this possibility using pentasubstituted corannulenes 4 and 5 carrying amide-appended thioalkyl side chains. Compound 4 displays chiroptical activity in a chiral hydrocarbon such as limonene. Because compound 5 carries a chiral center in the side chains, its enantiomers 5R and 5S show chiroptical activity even in achiral solvents such as CHCl3 and methylcyclohexane. In sharp contrast, when the side chains bear no amide functionality (1 and 2R), no chiroptical activity emerges even in limonene or with a chiral center in the side chains. Detailed investigations revealed that the peripheral amide units in 4 and 5 are hydrogen-bonded only "intramolecularly" along the corannulene periphery, affording cyclic amide networks with clockwise and anticlockwise geometries. Although this networking gives rise to four stereoisomers, only two, which are enantiomeric to one another, are suggested computationally to exist in the equilibrated system. In a chiral environment (chiral solvent or side chain), their thermodynamic stabilities are certainly unequal, so the bowl-inversion equilibrium can be desymmetrized. However, this is not the case when the system contains a protic solvent that can deteriorate the hydrogen-bonding network. When the enantiomeric purity of limonene as the solvent is varied, the chiroptical activity of the corannulene core changes nonlinearly with its enantiomeric excess (majority rule).

PMID:
25046475
[PubMed - in process]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk