Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Death Dis. 2014 Jul 17;5:e1345. doi: 10.1038/cddis.2014.299.

Bone marrow-derived clonal mesenchymal stem cells inhibit ovalbumin-induced atopic dermatitis.

Author information

  • 1Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea.
  • 2Department of Drug Development, Inha University School of Medicine, Incheon, Republic of Korea.
  • 3Department of Molecular Biomedicine, Inha University School of Medicine, Incheon, Republic of Korea.
  • 41] Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea [2] SCM Lifescience Co. Ltd, Incheon, Republic of Korea [3] Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, Republic of Korea.
  • 51] Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea [2] Department of Drug Development, Inha University School of Medicine, Incheon, Republic of Korea [3] SCM Lifescience Co. Ltd, Incheon, Republic of Korea.
  • 61] Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea [2] Department of Molecular Biomedicine, Inha University School of Medicine, Incheon, Republic of Korea [3] Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, Republic of Korea.

Abstract

Mesenchymal stem cells (MSCs) possess immunomodulatory activities, including suppression of T- and B-cell activation. However, their effects on atopic dermatitis (AD) have not yet been studied. Using an ovalbumin-induced AD mouse model, we investigated whether MSCs can be used as therapeutics in AD. We isolated both allogeneic and syngeneic clonal MSCs (cMSCs) from mouse bone marrow according to the subfractionation culturing method. Our cMSCs suppressed both T- and B-cell activation. T-cell proliferation and cytokine production, including interferon (IFN)-γ and interleukin (IL)-4, were suppressed by inhibition of transcription factors, such as T-bet, GATA-3, and c-Maf. Those transcription factors were nitric oxide dependent. Immunoglobulin E (IgE) suppression occurred through downregulation of AID and BLIMP-1, important regulators for isotype class switch and B-cell differentiation. The cMSCs were injected intravenously into ovalbumin-induced AD mouse model, and the therapeutic effects were analyzed. Injection of both allogeneic and syngeneic cMSCs in an AD mouse model inhibited cell infiltration in skin lesions and decreased the serum level of IgE. IL-4 expression was also suppressed by cMSCs in both the lymph node and skin. The cMSCs migrated to skin lesions and draining lymph nodes. Taken together, these data demonstrated that cMSCs, which suppressed T- and B-cell functions, can be used for the treatment of AD in mice.

PMID:
25032868
[PubMed - indexed for MEDLINE]
PMCID:
PMC4123091
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk