Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Biometeorol. 2015 May;59(5):503-15. doi: 10.1007/s00484-014-0864-y. Epub 2014 Jul 11.

Outdoor thermal physiology along human pathways: a study using a wearable measurement system.

Author information

  • 1Department of Civil Engineering, Tokyo University of Science, 2641, Yamasaki, Noda city, Chiba Prefecture, 278-8510, Japan, nakayoshi@rs.tus.ac.jp.

Abstract

An outdoor summer study on thermal physiology along subjects' pathways was conducted in a Japanese city using a unique wearable measurement system that measures all the relevant thermal variables: ambient temperature, humidity, wind speed (U) and short/long-wave radiation (S and L), along with some physio-psychological parameters: skin temperature (T skin), pulse rate, subjective thermal sensation and state of body motion. U, S and L were measured using a globe anemo-radiometer adapted use with pedestrian subjects. The subjects were 26 healthy Japanese adults (14 males, 12 females) ranging from 23 to 74 years in age. Each subject wore a set of instruments that recorded individual microclimate and physiological responses along a designated pedestrian route that traversed various urban textures. The subjects experienced varying thermal environments that could not be represented by fixed-point routine observational data. S fluctuated significantly reflecting the mixture of sunlit/shade distributions within complex urban morphology. U was generally low within urban canyons due to drag by urban obstacles such as buildings but the subjects' movements enhanced convective heat exchanges with the atmosphere, leading to a drop in T skin. The amount of sweating increased as standard effective temperature (SET*) increased. A clear dependence of sweating on gender and body size was found; males sweated more than females; overweight subjects sweated more than standard/underweight subjects. T skin had a linear relationship with SET* and a similarly clear dependence on gender and body size differences. T skin of the higher-sweating groups was lower than that of the lower-sweating groups, reflecting differences in evaporative cooling by perspiration.

PMID:
25011423
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk