Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Antimicrob Chemother. 2014 Nov;69(11):2966-71. doi: 10.1093/jac/dku238. Epub 2014 Jul 2.

Development of colistin resistance in pmrA-, phoP-, parR- and cprR-inactivated mutants of Pseudomonas aeruginosa.

Author information

  • 1Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea.
  • 2Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea ksko@skku.edu.

Abstract

OBJECTIVES:

Colistin susceptibility in Pseudomonas aeruginosa is associated with a lipopolysaccharide (LPS) structure that is controlled by the modulation of several two-component regulatory systems. In this study, we attempted to elucidate the role of these two-component systems in the development of colistin resistance in P. aeruginosa.

METHODS:

pmrA-, phoP-, parR- or cprR-inactivated mutants were constructed from a colistin-susceptible P5 strain. Colistin-resistant mutants (P5R, P5ΔpmrA-R, P5ΔphoP-R, P5ΔparR-R and P5ΔcprR-R) were developed in vitro from a wild-type strain (P5) and pmrA-, phoP-, parR- or cprR-inactivated mutants by serial passage in colistin-containing media. Expression levels of the pmrA, phoP, parR, cprR and arnB genes were determined and amino acid alterations of two-component regulatory systems during development of colistin resistance were also investigated.

RESULTS:

While P5ΔpmrA-R, P5ΔparR-R and P5ΔcprR-R showed elevated expression of the phoP gene, the expression levels of the pmrA, parR and cprR genes were not different between gene-inactivated mutants and the adapted colistin-resistant mutants. P5ΔphoP-R showed no significant elevation in expression of any of the pmrA, parR or cprR genes. The arnB gene was overexpressed in all in vitro-selected colistin-resistant mutants compared with colistin-susceptible wild-type and gene-inactivated mutants. Three amino acid alterations in PhoQ and three in ParS were identified in induced colistin-resistant mutants.

CONCLUSIONS:

Our data suggest that individual two-component systems may not be essential for the acquisition of colistin resistance in P. aeruginosa. The PhoPQ two-component system may play a major role in the development of colistin resistance in our strains, but alternative or compensatory pathways may exist.

© The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

KEYWORDS:

arnB; qRT–PCR; two-component regulatory systems

PMID:
24994873
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk