Format

Send to:

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2014 Nov 15;23(22):6088-95. doi: 10.1093/hmg/ddu308. Epub 2014 Jun 18.

Excess of homozygosity in the major histocompatibility complex in schizophrenia.

Author information

  • 1The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd Street, Glen Oaks, NY 11004, USA, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA, smukherje1@nshs.edu tlencz@nshs.edu.
  • 2The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd Street, Glen Oaks, NY 11004, USA, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
  • 3Fujita Health University School of Medicine, 1-98 Kutsukake-cho Dengakugakubo, Toyoake, Aichi 470-1192, Japan.
  • 4The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd Street, Glen Oaks, NY 11004, USA, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA, Hofstra University School of Medicine, 500 Hofstra University, Hempstead, NY 11549, USA.
  • 5Department of Computer Science, Columbia University, New York, NY 10027, USA and.
  • 6Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel.
  • 7The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd Street, Glen Oaks, NY 11004, USA, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA, Hofstra University School of Medicine, 500 Hofstra University, Hempstead, NY 11549, USA, smukherje1@nshs.edu tlencz@nshs.edu.

Abstract

Genome-wide association studies (GWAS) in schizophrenia have focused on additive allelic effects to identify disease risk loci. In order to examine potential recessive effects, we applied a novel approach to identify regions of excess homozygosity in an ethnically homogenous cohort: 904 schizophrenia cases and 1640 controls drawn from the Ashkenazi Jewish (AJ) population. Genome-wide examination of runs of homozygosity identified an excess in cases localized to the major histocompatibility complex (MHC). To refine this signal, we used the recently developed GERMLINE algorithm to identify chromosomal segments shared identical-by-descent (IBD) and compared homozygosity at such segments in cases and controls. We found a significant excess of homozygosity in schizophrenia cases compared with controls in the MHC (P-value = 0.003). An independent replication cohort of 548 schizophrenia cases from Japan and 542 matched healthy controls demonstrated similar effects. The strongest case-control recessive effects (P = 8.81 × 10(-8)) were localized to a 53-kb region near HLA-A, in a segment encompassing three poorly annotated genes, TRIM10, TRIM15 and TRIM40. At the same time, an adjacent segment in the Class I MHC demonstrated clear additive effects on schizophrenia risk, demonstrating the complexity of association in the MHC and the ability of our IBD approach to refine localization of broad signals derived from conventional GWAS. In sum, homozygosity in the classical MHC region appears to convey significant risk for schizophrenia, consistent with the ecological literature suggesting that homozygosity at the MHC locus may be associated with vulnerability to disease.

© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

PMID:
24943592
[PubMed - indexed for MEDLINE]
PMCID:
PMC4204767
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk