Format

Send to:

Choose Destination
See comment in PubMed Commons below
Metabolism. 2014 Aug;63(8):1000-11. doi: 10.1016/j.metabol.2014.04.002. Epub 2014 Apr 12.

Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity.

Author information

  • 1Division of Cardiovascular Medicine, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA; Department of Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia MO, USA.
  • 2Department of Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA.
  • 3Harry S. Truman Memorial Veterans Hospital, Columbia MO, USA; Department of Radiology, University of Missouri, Columbia, MO, USA.
  • 4Department of Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA. Electronic address: sowersj@health.missouri.edu.

Abstract

OBJECTIVE:

Consumption of a high-fat/high-fructose Western diet (WD) is linked to rising obesity and heart disease, particularly diastolic dysfunction which characterizes early obesity/metabolic cardiomyopathy. Mounting evidence supports a role for inflammation, oxidative stress and fibrosis in the pathophysiology of metabolic cardiomyopathy. Dipeptidyl peptidase-4 (DPP-4) is a circulating exopeptidase recently reported to be elevated in the plasma of patients with insulin resistance (IR), obesity and heart failure. We hypothesized that a model of WD induced obesity/metabolic cardiomyopathy would exhibit increased DPP-4 activity and cardiac fibrosis with DPP-4 inhibition preventing cardiac fibrosis and the associated diastolic dysfunction.

MATERIALS/METHODS:

Four-week-old C57BL6/J mice were fed a high-fat/high-fructose WD with the DPP-4 inhibitor MK0626 for 16 weeks. Cardiac function was examined by high-resolution cine-cardiac magnetic resonance imaging (MRI). Phenotypic analysis included measurements of body and heart weight, systemic IR and DPP-4 activity. Immunohistochemistry and transmission electron microscopy (TEM) were utilized to identify underlying pathologic mechanisms.

RESULTS:

We found that chronic WD consumption caused obesity, IR, elevated plasma DPP-4 activity, heart enlargement and diastolic dysfunction. DPP-4 inhibition with MK0626 in WD fed mice resulted in >75% reduction in plasma DPP-4 activity, improved IR and normalized diastolic relaxation. WD consumption induced myocardial oxidant stress and fibrosis with amelioration by MK0626. TEM of hearts from WD fed mice revealed abnormal mitochondrial and perivascular ultrastructure partially corrected by MK0626.

CONCLUSIONS:

This study provides evidence of a role for increased DPP-4 activity in metabolic cardiomyopathy and a potential role for DPP-4 inhibition in prevention and/or correction of oxidant stress/fibrosis and associated diastolic dysfunction.

Copyright © 2014 Elsevier Inc. All rights reserved.

KEYWORDS:

DPP-4; Heart failure; Inflammation; Oxidative stress

PMID:
24933400
[PubMed - indexed for MEDLINE]
PMCID:
PMC4128682
[Available on 2015-08-01]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk