Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2014 May 19;22(10):12533-44. doi: 10.1364/OE.22.012533.

Identification of wheat quality using THz spectrum.


The terahertz (THz) spectra in the range of 0.2-1.6 THz (6.6-52.8 cm<sup>-1</sup>) of wheat grains with various degrees of deterioration (normal, worm-eaten, moldy, and sprouting wheat grains) were investigated by terahertz time domain spectroscopy. Principal component analysis (PCA) was employed to extract feature data according to the cumulative contribution rates; the top four principal components were selected, and then a support vector machine (SVM) method was applied. Several selection kernels (linear, polynomial, and radial basis functions) were applied to identify the four types of wheat grain. The results showed that the materials were identified with an accuracy of nearly 95%. Furthermore, this approach was compared with others (principal component regression, partial least squares regression, and back-propagation neural networks). The comparisons showed that PCA-SVM outperformed the others and also indicated that the proposed method of THz technology combined with PCA-SVM is efficient and feasible for identifying wheat of different qualities.

[PubMed - in process]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk