Format

Send to:

Choose Destination
See comment in PubMed Commons below
Acta Biochim Pol. 2014;61(2):205-10. Epub 2014 Jun 6.

Biocatalytic synthesis of δ-gluconolactone and ε-caprolactone copolymers.

Author information

  • 1Faculty of Industrial Chemistry and Environmental Engineering, University "Politehnica" of Timisoara, Timisoara, Romania.
  • 2Department of Applied Chemistry, University of Debrecen, Debrecen, Hungary.
  • 3Wageningen UR Food & Biobased Research, Wageningen, The Netherlands.

Abstract

The biodegradability and biocompatibility properties of ε-caprolactone homopolymers place it as a valuable raw material, particularly for controlled drug delivery and tissue engineering applications. However, the usefulness of such materials is limited by their low hydrophilicity and slow biodegradation rate. In order to improve polycaprolactone properties and functionalities, copolymerization of ε-caprolactone with δ-gluconolactone was investigated. Since enzymatic reactions involving sugars are usually hindered by the low solubility of these compounds in common organic solvents, finding the best reaction medium was a major objective of this research. The optimal copolymerization conditions were set up by using different organic media (solvent and solvents mixtures), as well as solvent free systems that are able to dissolve (completely or partially) sugars, and are nontoxic for enzymes. Native and immobilized lipases by different immobilization techniques from Candida antarctica B and Thermomyces lanuginosus have been used as biocatalyst at 80°C. Although the main copolymer amount was synthesized in DMSO:t-BuOH (20:80) medium, the highest polymerization degrees, up to 16 for the copolymer product, were achieved in solventless conditions. The products, cyclic and linear polyesters, have been characterized by FT-IR and MALDI-TOF MS analysis. The reaction product analysis revealed the formation of cyclic products that could be the major impediment of further increase of the chain length.

PMID:
24904930
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Acta Biochemica Polonica, Inc.
    Loading ...
    Write to the Help Desk