Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biomater Sci Polym Ed. 2014;25(11):1159-73. doi: 10.1080/09205063.2014.923367. Epub 2014 Jun 5.

Characterization of a degradable polar hydrophobic ionic polyurethane with circulating angiogenic cells in vitro.

Author information

  • 1a Division of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , Canada.

Abstract

This study investigated the interaction of human circulating angiogenic cells (CACs) with a degradable polar hydrophobic ionic polyurethane (D-PHI) which has been previously shown to exhibit anti-inflammatory character and favorable interactions with human endothelial cells (ECs). Given the implication of the CACs in microvessel development it was of intrinsic interest to expand our knowledge of D-PHI biocompatibility with this relevant primary cell involved in angiogenesis. The findings will be compared to a well-established benchmark substrate for CACs, fibronectin-coated tissue culture polystyrene (TCPS). Immunoblotting analysis showed that CACs were a heterogeneous population of cells composed mostly of monocytic cells expressing the CD14 marker. Assessment of the cytokine release profile, using ELISA, showed that D-PHI supported a higher concentration of interleukin-10 (IL-10) when compared to the concentration of tumor necrosis factor alpha, which is indicative of an anti-inflammatory phenotype, and was different from the response with TCPS. It was found that the CACs were attached to D-PHI and remained viable and functional (nitric oxide production) during the seven days of culture. However, there did not appear to be any significant proliferation on D-PHI, contrary to the CAC growth on fibronectin-coated TCPS. It was concluded that D-PHI displayed some of the qualities suitable to enable the retention of CACs onto this substrate, as well as maintaining an anti-inflammatory phenotype, characteristics which have been reported to be important for angiogenesis in vivo.

KEYWORDS:

circulating angiogenic cells; degradable; monocytes; polyurethane; vascular graft

PMID:
24898697
[PubMed - in process]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk