Format

Send to

Choose Destination
See comment in PubMed Commons below
Biores Open Access. 2014 Apr 1;3(2):70-4. doi: 10.1089/biores.2013.0036.

Development of an animal fracture model for evaluation of cement augmentation femoroplasty: an in vitro biomechanical study.

Author information

  • 1Department of Orthopaedics and Traumatology, University of Hong Kong , Hong Kong, China .
  • 2Department of Orthopaedics and Traumatology, University of Hong Kong , Hong Kong, China . ; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital , Shenzhen, China .

Abstract

Osteoporotic hip fracture is the most severe kind of fracture with high morbidity and mortality. Patients' ambulation and quality of life are significantly affected by the fracture because only 50% regain their prefracture functional status, even if they undergo surgeries. There are many issues associated with the current preventive methods e.g., cost, side effects, patient compliance, and time for onset of action. Femoroplasty, the injection of bone cement into the proximal femur to augment femoral strength and to prevent fracture, has been an option with great potential. However, until now femoroplasty has remained at the stage of biomechanical testing. No in vivo study has evaluated its safety and effectiveness; there is not even an animal model for such investigations. The objective of this study was to develop a proximal femur fracture goat model that consistently fractures at the proximal femur when subject to vertical load, simulating osteoporotic hip fractures in human. Six pairs of fresh frozen mature Chinese goats' femora were obtained and randomly assigned into two groups. For the experimental group, a cylindrical bone defect was created at the proximal femur, while the control was left untreated. In addition, a configuration to mimic the mechanical axis of the goat femur was developed. When subjected to load along the mechanical axis, all the specimens from the bone defect group experienced femoral neck fractures, while fractures occurred at the femoral neck or other sites of the proximal femur in the control group. The biomechanical property (failure load) of the bone defect specimens was significantly lower than that of the control specimens (p<0.05). Osteoporotic hip fractures of humans were simulated by a goat fracture model, which may serve as a reference for future femoroplasty studies in vivo. The newly developed configuration simulating a femoral mechanical axis for biomechanical tests was practicable during the study.

KEYWORDS:

aging; femur fracture; hip fracture; osteoporosis

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk