Send to:

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2014 May 28;6(10):7117-25. doi: 10.1021/am406053s. Epub 2014 May 13.

Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries.

Author information

  • 1Key Laboratory of Chemical Biology, Jiangxi Province, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University , 99 Ziyang Road, Nanchang 330022, China.


A simple and industrially scalable approach to prepare porous carbon (PC) with high surface areas as well as abundant nitrogen element as anode supporting materials for lithium-ion batteries (LIBs) was developed. Herein, the N-doped PC was prepared by carbonizing crawfish shell, which is a kind of food waste with abundant marine chitin as well as a naturally porous structure. The porous structure can be kept to form the N-doped PC in the pyrolysis process. The N-doped PC-Co3O4 nanocomposites were synthesized by loading Co3O4 on the N-doped PC as anode materials for LIBs. The resulting N-doped PC-Co3O4 nanocomposites release an initial discharge of 1223 mA h g(-1) at a current density of 100 mA g(-1) and still maintain a high reversible capacity of 1060 mA h g(-1) after 100 cycles, which is higher than that of individual N-doped PC or Co3O4. Particularly, the N-doped PC-Co3O4 nanocomposites can be prepared in a large yield with a low cost because the N-doped PC is derived from abundant natural waste resources, which makes it a promising anode material for LIBs.

[PubMed - in process]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk