Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Virology. 1989 Sep;172(1):302-10.

Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase.

Author information

  • 1Department of Microbiology, Oregon State University, Corvallis 97331-3804.

Abstract

The 49-kDa proteinase of tobacco etch virus (TEV) cleaves the polyprotein derived from the TEV genomic RNA at five locations. Molecular genetic and biochemical analyses of the 49-kDa TEV proteinase were performed to test its homology to the cellular trypsin-like serine proteases. A cDNA fragment, containing the TEV 49-kDa proteinase gene and flanking sequences, was expressed in a cell-free transcription/translation system and resulted in the formation of a polyprotein precursor that underwent rapid self-processing. Site-directed mutagenesis was used to test the effect of altering individual 49-kDa amino acid residues on proteolysis. The data suggest that the catalytic triad of the TEV 49-kDa proteinase could be composed of the His234, Asp269, and Cys339. These findings are consistent with the hypothesis that the TEV 49-kDa proteinase is structurally similar to the trypsin-like family of serine proteinases with the substitution of Cys339 as the active site nucleophile. A structural model of the TEV 49-kDa proteinase proposes other virus-specific differences in the vicinity of the active site triad and substrate-binding pocket. The structure may explain the observed negligible effect of most cellular proteinase inhibitors on the activity of this viral proteinase.

PMID:
2475971
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk