Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2014 Apr 17;9(4):e91883. doi: 10.1371/journal.pone.0091883. eCollection 2014.

Independent evolutionary origin of fem paralogous genes and complementary sex determination in hymenopteran insects.

Author information

  • 1Institute of Evolutionary Genetics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.


The primary signal of sex determination in the honeybee, the complementary sex determiner (csd) gene, evolved from a gene duplication event from an ancestral copy of the fem gene. Recently, other paralogs of the fem gene have been identified in several ant and bumblebee genomes. This discovery and the close phylogenetic relationship of the paralogous gene sequences led to the hypothesis of a single ancestry of the csd genetic system of complementary sex determination in the Hymenopteran insects, in which the fem and csd gene copies evolved as a unit in concert with the mutual transfers of sequences (concerted evolution). Here, we show that the paralogous gene copies evolved repeatedly through independent gene duplication events in the honeybee, bumblebee, and ant lineage. We detected no sequence tracts that would indicate a DNA transfer between the fem and the fem1/csd genes between different ant and bee species. Instead, we found tracts of duplication events in other genomic locations, suggesting that gene duplication was a frequent event in the evolution of these genes. These and other evidences suggest that the fem1/csd gene originated repeatedly through gene duplications in the bumblebee, honeybee, and ant lineages in the last 100 million years. Signatures of concerted evolution were not detectable, implicating that the gene tree based on neutral synonymous sites represents the phylogenetic relationships and origins of the fem and fem1/csd genes. Our results further imply that the fem1 and csd gene in bumblebees, honeybees, and ants are not orthologs, because they originated independently from the fem gene. Hence, the widely shared and conserved complementary sex determination mechanism in Hymenopteran insects is controlled by different genes and molecular processes. These findings highlight the limits of comparative genomics and emphasize the requirement to study gene functions in different species and major hymenopteran lineages.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk