Format

Send to:

Choose Destination
See comment in PubMed Commons below
Front Neuroanat. 2014 Mar 26;8:13. doi: 10.3389/fnana.2014.00013. eCollection 2014.

Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia.

Author information

  • 1State Key Laboratory of Medical Neurobiology and Department of Neurobiology, School of Basic Medical Science, Fudan University Shanghai, China.
  • 2Neurology Department and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA.
  • 3State Key Laboratory of Medical Neurobiology and Department of Neurobiology, School of Basic Medical Science, Fudan University Shanghai, China ; Department of Pharmacology, School of Basic Medical Science, Fudan University Shanghai, China ; Institute of Brain Science, Fudan University Shanghai, China.

Abstract

The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson's disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine [N-methyl-d-aspartate (NMDA) receptor antagonist] and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist). Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN) input to internal globus pallidus (GPi) and substantia nigra pars reticulata (SNr), while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu) dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe), and STN but increased activity of the GPi, SNr, and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders.

KEYWORDS:

6-hydroxydopamine; arousal; atropine; basal ganglia; c-Fos; cerebral cortex; rat

PMID:
24723855
[PubMed]
PMCID:
PMC3972462
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers Media SA Icon for PubMed Central
    Loading ...
    Write to the Help Desk