Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2014 Apr 10;165(2):747-758. [Epub ahead of print]

A Positive Regulator of Nodule Organogenesis, NODULE INCEPTION, Acts as a Negative Regulator of Rhizobial Infection in Lotus japonicus.

Author information

  • 1Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan (K.T., H.F.); andResearch Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan (H.M.).
  • 2Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan (K.T., H.F.); andResearch Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan (H.M.) masayosi@nibb.ac.jp.

Abstract

Legume-rhizobium symbiosis occurs in specialized root organs called nodules. To establish the symbiosis, two major genetically controlled events, rhizobial infection and organogenesis, must occur. For a successful symbiosis, it is essential that the two phenomena proceed simultaneously in different root tissues. Although several symbiotic genes have been identified during genetic screenings of nonsymbiotic mutants, most of the mutants harbor defects in both infection and organogenesis pathways, leading to experimental difficulty in investigating the molecular genetic relationships between the pathways. In this study, we isolated a novel nonnodulation mutant, daphne, in Lotus japonicus that shows complete loss of nodulation but a dramatically increased numbers of infection threads. Characterization of the locus responsible for these phenotypes revealed a chromosomal translocation upstream of NODULE INCEPTION (NIN) in daphne. Genetic analysis using a known nin mutant revealed that daphne is a novel nin mutant allele. Although the daphne mutant showed reduced induction of NIN after rhizobial infection, the spatial expression pattern of NIN in epidermal cells was broader than that in the wild type. Overexpression of NIN strongly suppressed hyperinfection in daphne, and daphne phenotypes were partially rescued by cortical expression of NIN. These observations suggested that the daphne mutation enhanced the role of NIN in the infection pathway due to a specific loss of the role of NIN in nodule organogenesis. Based on these results, we provide evidence that the bifunctional transcription factor NIN negatively regulates infection but positively regulates nodule organogenesis during the course of the symbiosis.

© 2014 American Society of Plant Biologists. All Rights Reserved.

PMID:
24722550
[PubMed - as supplied by publisher]
PMCID:
PMC4043699
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk