Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cancer. 2014 Apr 8;13:80. doi: 10.1186/1476-4598-13-80.

miR-375 activates p21 and suppresses telomerase activity by coordinately regulating HPV E6/E7, E6AP, CIP2A, and 14-3-3ζ.

Author information

  • 1Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610, USA.



While microRNAs (miRNAs) are extensively studied in post-transcriptional regulation of gene expressions in many biological processes, cellular miRNA-mediated regulation of viral genes remains unclear. In particular, the interplay between human papillomavirus (HPV) genes and miRNAs and how these interactions contribute to HPV-associated cancers remain elusive.


Transient transfection of miR-375-mimic was used to compensate the loss-of-function of miR-375 in HPV-positive cancer. Regulation of oncogenic molecules and their downstream molecules via miR-375 in HPV-positive cancer was investigated using qRT-PCR, western blot, dual luciferase assay, indirect immunofluorescence analysis. All experiments were conducted at least three times to achieve statistical significance determined by Student t-test.


In this study, we demonstrated how miR-375 negatively regulates HPV16 and 18 transcripts. We also found a cellular protein, E6-associated protein (E6AP), directly regulated by miR-375. miR-375-mediated repression of HPV transcripts and E6AP elevated major tumor suppressors p53, p21, and retinoblastoma protein 1 (RB). Cooperative regulation of miR-375 targets along with the increase of tumor suppressors led to ~60% reduction of telomerase reverse transcriptase (TERT) transcription followed by ~35% decrease of telomerase activity. Furthermore, miR-375-mediated regulation of 14-3-3ζ contributes to decrease telomerase activity by altering nuclear translocation of TERT.


Taken together, miR-375-mediated suppression of multiple oncogenic components in HPV-associated carcinogenesis generates a cumulative biological response to rescue key tumor suppressors and diminish telomerase activity, which results in cell cycle arrest and cell proliferation inhibition.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk