Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2014 Apr 23;6(8):5852-9. doi: 10.1021/am500643y. Epub 2014 Apr 4.

Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese.

Author information

  • 1Solar Fuels Lab, School of Materials Science and Engineering, Nanyang Technological University , 639798, Singapore.


Here, we report a significant improvement of the photoelectrochemical (PEC) properties of hematite (α-Fe2O3) to oxidize water by doping with manganese. Hematite nanorods were grown on a fluorine-treated tin oxide (FTO) substrate by a hydrothermal method in the presence on Mn. Systematic physical analyses were performed to investigate the presence of Mn in the samples. Fe2O3 nanorods with 5 mol % Mn treatment showed a photocurrent density of 1.6 mA cm(-2) (75% higher than that of pristine Fe2O3) at 1.23 V versus RHE and a plateau photocurrent density of 3.2 mA cm(-2) at 1.8 V versus RHE in a 1 M NaOH electrolyte solution (pH 13.6). We attribute the increase in the photocurrent density, and thus in the oxygen evolving capacity, to the increased donor density resulting from Mn doping of the Fe2O3 nanorods, as confirmed by Mott-Schottky measurement, as well as the suppression of electron-hole recombination and enhancement in hole transport, as detected by chronoamperometry measurements.

[PubMed - in process]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk