Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing

J Mol Med (Berl). 2014 Jul;92(7):769-77. doi: 10.1007/s00109-014-1141-6.

Abstract

The chromosomal region 11p15 contains two imprinting control regions (ICRs) and is a key player in molecular processes regulated by genomic imprinting. Genomic as well as epigenetic changes affecting 11p15 are associated either with Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS). In the last years, a growing number of patients affected by imprinting disorders (IDs) have reported carrying the disease-specific 11p15 hypomethylation patterns as well as methylation changes at imprinted loci at other chromosomal sites (multi-locus methylation defects, MLMD). Furthermore, in several patients, molecular alterations (e.g., uniparental disomies, UPDs) additional to the primary epimutations have been reported. To determine the frequency and distribution of mutations and epimutations in patients referred as SRS or BWS for genetic testing, we retrospectively ascertained our routine patient cohort consisting of 711 patients (SRS, n = 571; BWS, n = 140). As this cohort represents the typical cohort in a routine diagnostic lab without clinical preselection, the detection rates were much lower than those reported from clinically characterized cohorts in the literature (SRS, 19.9%; BWS, 28.6%). Among the molecular subgroups known to be predisposed to MLMD, the frequencies corresponded to that in the literature (SRS, 7.1% in ICR1 hypomethylation carriers; BWS, 20.8% in ICR2 hypomethylation patients). In several patients, more than one epigenetic or genetic disturbance could be identified. Our study illustrates that the complex molecular alterations as well as the overlapping and sometimes unusual clinical findings in patients with imprinting disorders (IDs) often make the decision for a specific imprinting disorder test difficult. We therefore suggest to implement molecular assays in routine ID diagnostics which allow the detection of a broad range of (epi)mutation types (epimutations, UPDs, chromosomal imbalances) and cover the clinically most relevant known ID loci because of the following: (a) Multi-locus tests increase the detection rates as they cover numerous loci. (b) Patients with unexpected molecular alterations are detected. (c) The testing of rare imprinting disorders becomes more efficient and quality of molecular diagnosis increases. (d) The tests identify MLMDs. In the future, the detailed characterization of clinical and molecular findings in ID patients will help us to decipher the complex regulation of imprinting and thereby providing the basis for more directed genetic counseling and therapeutic managements in IDs.

Key message: Molecular disturbances in patients with imprinting disorders are often not restricted to the disease-specific locus but also affect other chromosomal regions. These additional disturbances include methylation defects, uniparental disomies as well as chromosomal imbalances. The identification of these additional alterations is mandatory for a well-directed genetic counseling. Furthermore, these findings help to decipher the complex regulation of imprinting.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Beckwith-Wiedemann Syndrome / diagnosis
  • Beckwith-Wiedemann Syndrome / genetics*
  • Chromosomes, Human, Pair 11*
  • Genomic Imprinting
  • Humans
  • Mutation
  • Silver-Russell Syndrome / diagnosis
  • Silver-Russell Syndrome / genetics*