Format

Send to:

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2014 Apr 15;48(8):4395-405. doi: 10.1021/es405119q. Epub 2014 Mar 26.

Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge.

Author information

  • 1Department of Energy, Environmental and Chemical Engineering, Washington University , St. Louis, Missouri 63130, United States.

Abstract

Managed aquifer recharge (MAR) is a water reuse technique with the potential to meet growing water demands. However, MAR sites have encountered arsenic mobilization resulting from recharge operations. To combat this challenge, it is imperative to identify the mechanisms of arsenic mobilization during MAR. In this bench-scale study, arsenic mobilization from arsenopyrite (FeAsS) was characterized for conditions relevant to MAR operations. Experimentally determined activation energies for arsenic mobilization from FeAsS under aerobic conditions were 36.9 ± 2.3 kJ/mol for 10 mM sodium chloride, 40.8 ± 3.5 kJ/mol for 10 mM sodium nitrate, and 43.6 ± 5.0 kJ/mol for secondary effluent from a wastewater treatment plant. Interestingly, the sodium chloride system showed higher arsenic mobilization under aerobic conditions. In addition, secondary mineral precipitation varied among systems and further affected arsenic mobilization. For example, the wastewater system inhibited precipitation, while in the sodium chloride system, faster phase transformation of iron(III) (hydr)oxide precipitates was observed, resulting in hematite formation after 7 days. The phase transformation to hematite will result in less available surface area for arsenic attenuation. These new observations and activation energies can be useful to develop improved reactive transport models for the fate of arsenic during MAR, and develop strategies to minimize arsenic release.

PMID:
24621369
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk