Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Front Immunol. 2014 Feb 18;5:65. doi: 10.3389/fimmu.2014.00065. eCollection 2014.

Cytokine-Mediated Regulation of Plasma Cell Generation: IL-21 Takes Center Stage.

Author information

  • 1Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia.
  • 2Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia ; St Vincent's Clinical School, University of New South Wales , Darlinghurst, NSW , Australia.

Abstract

During our life, we are surrounded by continuous threats from a diverse range of invading pathogens. Our immune system has evolved multiple mechanisms to efficiently deal with these threats so as to prevent them from causing disease. Terminal differentiation of mature B cells into plasma cells (PC) - the antibody (Ab) secreting cells of the immune system - is critical for the generation of protective and long-lived humoral immune responses. Indeed, efficient production of antigen (Ag)-specific Ab by activated B cells underlies the success of most currently available vaccines. The mature B-cell pool is composed of several subsets, distinguished from one according to size, surface marker expression, location, and Ag exposure, and they all have the capacity to differentiate into PCs. For a B-cell to acquire the capacity to produce Abs, it must undergo an extensive differentiation process driven by changes in gene expression. Two broad categories of Ags exist that cause B-cell activation and differentiation: T cell dependent (TD) or T cell independent (TI). In addition to the B-cell subset and nature of the Ag, it is important to consider the cytokine environment that can also influence how B-cell differentiation is achieved. Thus, while many cytokines can induce Ab-secretion by B cells after activation with mimics of TD and TI stimuli in vitro, they can have different efficacies and specificities, and can often preferentially induce production of one particular Ig isotype over another. Here, we will provide an overview of in vitro studies (mouse and human origin) that evaluated the role of different cytokines in inducing the differentiation of distinct B-cell subsets to the PC lineage. We will place particular emphasis on IL-21, which has emerged as the most potent inducer of terminal B-cell differentiation in humans. We will also focus on the role of IL-21 and defects in B-cell function and how these contribute to human immunopathologies such as primary immunodeficiencies and B-cell mediated autoimmune conditions.

KEYWORDS:

IL-21; autoimmune diseases; cytokines; differentiation; human B cells; immunodeficiency; plasma cells

PMID:
24600453
[PubMed]
PMCID:
PMC3927127
Free PMC Article

Publication Types

Publication Types

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers Media SA Icon for PubMed Central
    Loading ...
    Write to the Help Desk