Base-stimulated 1,2-, 1,4-, and 1,6-eliminations in suitably substituted alkylidenesuccinates leading to natural and unnatural conjugated alkenyl(methyl)maleic anhydrides

J Org Chem. 2014 Mar 21;79(6):2538-46. doi: 10.1021/jo402857r. Epub 2014 Mar 11.

Abstract

With dimethyl maleate as the starting material, facile stereoselective syntheses of natural and unnatural conjugated alkenyl(methyl)maleic anhydrides have been described. The key reactions were base-endorsed novel 1,2-, 1,4-, and 1,6-eliminations in the corresponding alkylidenesuccinate derivatives. The 1,2-eliminations in cyclic carbonate and sulfite by regioselective abstraction of methine protons with the respective release of CO2 and SO2 provided a conjugated ketone product. The characteristic 1,4- and 1,6-elimination reactions with respective release of acetone and mesylate furnished the corresponding unsaturated alcohols. The obtained allylic alcohols were transformed into conjugated alkenyl(methyl)maleic anhydrides via oxidation followed by a Horner-Wadsworth-Emmons reaction pathway in very good yields. The mechanistic aspects involved in these significant elimination reactions have also been described in brief.