Send to

Choose Destination
See comment in PubMed Commons below
J Virol. 2014 May;88(9):5014-28. doi: 10.1128/JVI.02785-13. Epub 2014 Feb 19.

Loss of a conserved N-linked glycosylation site in the simian immunodeficiency virus envelope glycoprotein V2 region enhances macrophage tropism by increasing CD4-independent cell-to-cell transmission.

Author information

  • 1Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.


Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) strains differ in their capacity to replicate in macrophages, but mechanisms underlying these differences are not fully understood. Here, we identify a highly conserved N-linked glycosylation site (N173 in SIV, corresponding to N160 in HIV) in the V2 region of the SIV envelope glycoprotein (Env) as a novel determinant of macrophage tropism and characterize mechanisms underlying this phenotype. Loss of the N173 glycosylation site in the non-macrophage-tropic SIVmac239 by introducing an N173Q mutation enhanced viral replication and multinucleated giant cell formation upon infection of rhesus macrophages, while the addition of N173 to SIVmac251 had the opposite effect. The removal of N173 in SIVmac239 enhanced CD4-independent cell-to-cell transmission to CCR5-expressing cells. SIVmac239 with N173Q mediated CD4-independent cell-cell fusion but could not infect CD4-negative cells in single-round infections. Thus, CD4-independent phenotypes were detected only in the context of cell-to-cell contact. Similar results were obtained in SIVmac251 with and without N173. N173 decreased the neutralization sensitivity of SIVmac251 but had no effect on the neutralization sensitivity of SIVmac239. The N173Q mutation had no effect on SIVmac239 binding to CD4 in Biacore assays, coimmunoprecipitation assays, and enzyme-linked immunosorbent assays (ELISAs). These findings suggest that the loss of the N173 N-linked glycosylation site increases SIVmac239 replication in macrophages by enhancing CD4-independent cell-to-cell virus transmission through CCR5-mediated fusion. This mechanism may facilitate the escape of macrophage-tropic viruses from neutralizing antibodies while promoting spreading infection by these viruses in vivo.


In this study, we identify a genetic determinant in the viral envelope (N173) that increases replication and spreading infection of SIV strains in macrophages by enhancing cell-to-cell virus transmission. This effect is explained by a novel mechanism involving increased cell-to-cell fusion in the absence of CD4, the primary receptor that normally mediates virus entry. The same genetic determinant also affects the sensitivity of these viruses to inhibition by neutralizing antibodies. Most macrophage-tropic HIV/SIV strains are known to be neutralization sensitive. Together, these findings suggest that this efficient mode of virus transmission may facilitate the escape of macrophage-tropic viruses from neutralizing antibodies while promoting spreading infection by these viruses to cells expressing little or no CD4 in vivo.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk