Display Settings:

Format

Send to:

Choose Destination
Proc Natl Acad Sci U S A. 1988 Jul;85(13):4710-4.

RNase PH: an Escherichia coli phosphate-dependent nuclease distinct from polynucleotide phosphorylase.

Author information

  • 1Department of Biochemistry, University of Connecticut Health Center, Farmington 06032.

Abstract

Final trimming of the 3' terminus of tRNA precursors in Escherichia coli is thought to proceed by an exonucleolytic mechanism. However, mutant strains lacking as many as four exoribonucleases known to act on tRNA still grow normally and process tRNA normally. Extracts from such a multiple-RNase-deficient strain accurately mature tRNA precursors exonucleolytically in vitro in a reaction that requires inorganic phosphate. Here we show that this reaction is not due to polynucleotide phosphorylase (PNPase) but, rather, that it is mediated by a phosphate-requiring exonuclease that we have named RNase PH. Purified PNPase is incapable of completely processing tRNA precursors, and extracts from a PNPase- strain retain full activity for phosphorolytic processing. Although both PNPase and RNase PH act in a phosphorolytic manner, they differ substantially in size and substrate specificity. RNase PH has a molecular mass of 45-50 kDa and favors tRNA precursors as substrates. The possible physiological role of RNase PH and the advantages of phosphorolytic processing are discussed.

PMID:
2455297
[PubMed - indexed for MEDLINE]
PMCID:
PMC280505
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk