Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cochrane Database Syst Rev. 2014 Feb 14;2:CD009122. doi: 10.1002/14651858.CD009122.pub2.

Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus.

Author information

  • 1Institute for General Practice, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, Hesse, Germany, 60590.

Abstract

BACKGROUND:

Clinical guidelines differ regarding their recommended blood glucose targets for patients with type 1 diabetes and recent studies on patients with type 2 diabetes suggest that aiming at very low targets can increase the risk of mortality.

OBJECTIVES:

To assess the effects of intensive versus conventional glycaemic targets in patients with type 1 diabetes in terms of long-term complications and determine whether very low, near normoglycaemic values are of additional benefit.

SEARCH METHODS:

A systematic literature search was performed in the databases The Cochrane Library, MEDLINE and EMBASE. The date of the last search was December 2012 for all databases.

SELECTION CRITERIA:

We included all randomised controlled trials (RCTs) that had defined different glycaemic targets in the treatment arms, studied patients with type 1 diabetes, and had a follow-up duration of at least one year.

DATA COLLECTION AND ANALYSIS:

Two review authors independently extracted data, assessed studies for risk of bias, with differences resolved by consensus. Overall study quality was evaluated by the 'Grading of Recommendations Assessment, Development, and Evaluation' (GRADE) system. Random-effects models were used for the main analyses and the results are presented as risk ratios (RR) with 95% confidence intervals (CI) for dichotomous outcomes.

MAIN RESULTS:

We identified 12 trials that fulfilled the inclusion criteria, including a total of 2230 patients. The patient populations varied widely across studies with one study only including children, one study only including patients after a kidney transplant, one study with newly diagnosed adult patients, and several studies where patients had retinopathy or microalbuminuria at baseline. The mean follow-up duration across studies varied between one and 6.5 years. The majority of the studies were carried out in the 1980s and all trials took place in Europe or North America. Due to the nature of the intervention, none of the studies could be carried out in a blinded fashion so that the risk of performance bias, especially for subjective outcomes such as hypoglycaemia, was present in all of the studies. Fifty per cent of the studies were judged to have a high risk of bias in at least one other category.Under intensive glucose control, the risk of developing microvascular complications was reduced compared to conventional treatment for a) retinopathy: 23/371 (6.2%) versus 92/397 (23.2%); RR 0.27 (95% CI 0.18 to 0.42); P < 0.00001; 768 participants; 2 trials; high quality evidence; b) nephropathy: 119/732 (16.3%) versus 211/743 (28.4%); RR 0.56 (95% CI 0.46 to 0.68); P < 0.00001; 1475 participants; 3 trials; moderate quality evidence; c) neuropathy: 29/586 (4.9%) versus 86/617 (13.9%); RR 0.35 (95% CI 0.23 to 0.53); P < 0.00001; 1203 participants; 3 trials; high quality evidence. Regarding the progression of these complications after manifestation, the effect was weaker (retinopathy) or possibly not existent (nephropathy: RR 0.79 (95% CI 0.37 to 1.70); P = 0.55; 179 participants with microalbuminuria; 3 trials; very low quality evidence); no adequate data were available regarding the progression of neuropathy. For retinopathy, intensive glucose control reduced the risk of progression in studies with a follow-up duration of at least two years (85/366 (23.2%) versus 154/398 (38.7%); RR 0.61 (95% CI 0.49 to 0.76); P < 0.0001; 764 participants; 2 trials; moderate quality evidence), while we found evidence for an initial worsening of retinopathy after only one year of intensive glucose control (17/49 (34.7%) versus 7/47 (14.9%); RR 2.32 (95% CI 1.16 to 4.63); P = 0.02; 96 participants; 2 trials; low quality evidence).Major macrovascular outcomes (stroke and myocardial infarction) occurred very rarely, and no firm evidence could be established regarding these outcome measures (low quality evidence).We found that intensive glucose control increased the risk for severe hypoglycaemia, however the results were heterogeneous and only the 'Diabetes Complications Clinical Trial' (DCCT) showed a clear increase in severe hypoglycaemic episodes under intensive treatment. A subgroup analysis according to the baseline haemoglobin A1c (HbA1c) of participants in the trials (low quality evidence) suggests that the risk of hypoglycaemia is possibly only increased for patients who started with relatively low HbA1c values (< 9.0%). Several of the included studies also showed a greater weight gain under intensive glucose control, and the risk of ketoacidosis was only increased in studies using insulin pumps in the intensive treatment group (very low quality evidence).Overall, all-cause mortality was very low in all studies (moderate quality evidence) except in one study investigating renal allograft as treatment for end-stage diabetic nephropathy. Health-related quality of life was only reported in the DCCT trial, showing no statistically significant differences between the intervention and comparator groups (moderate quality evidence). In addition, only the DCCT published data on costs, indicating that intensive glucose therapy control was highly cost-effective considering the reduction of potential diabetes complications (moderate quality evidence).

AUTHORS' CONCLUSIONS:

Tight blood sugar control reduces the risk of developing microvascular diabetes complications. The evidence of benefit is mainly from studies in younger patients at early stages of the disease. Benefits need to be weighed against risks including severe hypoglycaemia, and patient training is an important aspect in practice. The effects of tight blood sugar control seem to become weaker once complications have been manifested. However, further research is needed on this issue. Furthermore, there is a lack of evidence from RCTs on the effects of tight blood sugar control in older patient populations or patients with macrovascular disease. There is no firm evidence for specific blood glucose targets and treatment goals need to be individualised taking into account age, disease progression, macrovascular risk, as well as the patient's lifestyle and disease management capabilities.

PMID:
24526393
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk