Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3182-7. doi: 10.1073/pnas.1321871111. Epub 2014 Feb 10.

Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent.

Author information

  • 1Department of Surgery and Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308.

Abstract

Previous studies have demonstrated that hydrogen sulfide (H2S) protects against multiple cardiovascular disease states in a similar manner as nitric oxide (NO). H2S therapy also has been shown to augment NO bioavailability and signaling. The purpose of this study was to investigate the impact of H2S deficiency on endothelial NO synthase (eNOS) function, NO production, and ischemia/reperfusion (I/R) injury. We found that mice lacking the H2S-producing enzyme cystathionine γ-lyase (CSE) exhibit elevated oxidative stress, dysfunctional eNOS, diminished NO levels, and exacerbated myocardial and hepatic I/R injury. In CSE KO mice, acute H2S therapy restored eNOS function and NO bioavailability and attenuated I/R injury. In addition, we found that H2S therapy fails to protect against I/R in eNOS phosphomutant mice (S1179A). Our results suggest that H2S-mediated cytoprotective signaling in the setting of I/R injury is dependent in large part on eNOS activation and NO generation.

KEYWORDS:

Cth; cystathionase; eNOS uncoupling; myocardial infarction; nitrite

PMID:
24516168
[PubMed - indexed for MEDLINE]
PMCID:
PMC3939925
Free PMC Article

Images from this publication.See all images (7)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk