Send to

Choose Destination
See comment in PubMed Commons below
ACS Nano. 2014 Mar 25;8(3):2609-17. doi: 10.1021/nn406256y. Epub 2014 Feb 10.

High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors.

Author information

  • 1Department of Materials Science & Engineering, Stanford University , Stanford, California 94305, United States.

Erratum in

  • ACS Nano. 2014 Jul 22;8(7):7550.


We describe herein a high-yield method to selectively disperse semiconducting CoMoCAT (CO disproportionation on Co-Mo catalysts) single-walled carbon nanotubes (SWNTs) with regioregular poly(3-alkylthiophenes) polymers. We observed that the dispersion yield was directly related to the length of the polymer's alkyl side chains. Molecular dynamics simulations in explicit toluene (real toluene molecules) indicate that polythiophenes with longer alkyl side chains bind strongly to SWNTs, due to the increased overall surface contact area with the nanotube. Furthermore, the sorting process selectively enriches smaller-diameter CoMoCAT SWNTs with larger bandgaps, which is ideal for solar cell applications. Compared to the larger diameter sorted HiPco (High-Pressure CO) SWNTs, solar cells fabricated using our sorted CoMoCAT SWNTs demonstrated higher open-circuit voltage (Voc) and infrared external quantum efficiency (EQE). The Voc achieved is the highest reported for solar cells based on SWNT absorbers under simulated AM1.5 solar illumination. Additionally, we employed the sorted CoMoCAT SWNTs to fabricate thin film transistors with excellent uniformity and device performance.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk