Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Microbiol. 2014 Jan 31;14:19. doi: 10.1186/1471-2180-14-19.

Lactobacillus GG restoration of the gliadin induced epithelial barrier disruption: the role of cellular polyamines.

Author information

  • 1Laboratory of Nutritional Pathophysiology, National Institute for Digestive Diseases I,R,C,C,S, "Saverio de Bellis", via Turi 27, I-70013 Castellana Grotte, BA, Italy. francesco.russo@irccsdebellis.it.

Abstract

BACKGROUND:

Celiac disease is characterized by enhanced intestinal paracellular permeability due to alterations of function and expression of tight junction (TJ) proteins including ZO-1, Claudin-1 and Occludin. Polyamines are pivotal in the control of intestinal barrier function and are also involved in the regulation of intercellular junction proteins. Different probiotic strains may inhibit gliadin-induced toxic effects and the Lactobacillus rhamnosus GG (L.GG) is effective in the prevention and treatment of gastrointestinal diseases. Aims of the study were to establish in epithelial Caco-2 cells whether i) gliadin affects paracellular permeability and polyamine profile; ii) co-administration of viable L.GG, heat-killed L.GG (L.GG-HK) or its conditioned medium (L.GG-CM) preserves the intestinal epithelial barrier integrity. Additionally, the effects of L.GG on TJ protein expression were tested in presence or absence of polyamines.

RESULTS:

Administration of gliadin (1 mg/ml) to Caco-2 cells for 6 h caused a significant alteration of paracellular permeability as demonstrated by the rapid decrease in transepithelial resistance with a concomitant zonulin release. These events were followed by a significant increase in lactulose paracellular transport and a slight lowering in ZO-1 and Occludin expression without affecting Claudin-1. Besides, the single and total polyamine content increased significantly. The co-administration of viable L.GG (10(8) CFU/ml), L.GG-HK and L.GG-CM with gliadin significantly restored barrier function as demonstrated by transepithelial resistance, lactulose flux and zonulin release. Viable L.GG and L.GG-HK, but not L.GG-CM, led to a significant reduction in the single and total polyamine levels. Additionally, only the co-administration of viable L.GG with gliadin significantly increased ZO-1, Claudin-1 and Occludin gene expression compared to control cells. When Caco-2 cells treated with viable L.GG and gliadin were deprived in the polyamine content by α-Difluoromethylornithine, the expression of TJ protein mRNAs was not significantly different from that in controls or cells treated with gliadin alone.

CONCLUSIONS:

Gliadin modifies the intestinal paracellular permeability and significantly increases the polyamine content in Caco-2 cells. Concomitant administration of L.GG is able to counteract these effects. Interestingly, the presence of cellular polyamines is necessary for this probiotic to exert its capability in restoring paracellular permeability by affecting the expression of different TJ proteins.

PMID:
24483336
[PubMed - indexed for MEDLINE]
PMCID:
PMC3911798
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk