Format

Send to

Choose Destination
See comment in PubMed Commons below
Matrix Biol. 2014 Feb;34:46-54. doi: 10.1016/j.matbio.2013.12.011. Epub 2014 Jan 26.

Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells.

Author information

  • 1Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
  • 2LifeCell Corporation, Branchburg, NJ 08876, USA.
  • 3Pharmazentrum Frankfurt, Goethe University, 60590 Frankfurt, Germany.
  • 4Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA. Electronic address: renato.iozzo@jefferson.edu.

Abstract

The highly conserved eukaryotic process of macroautophagy (autophagy) is a non-specific bulk-degradation program critical for maintaining proper cellular homeostasis, and for clearing aged and damaged organelles. This decision is inextricably dependent upon prevailing metabolic demands and energy requirements of the cell. Soluble monomeric decorin functions as a natural tumor repressor that antagonizes a variety of receptor tyrosine kinases. Recently, we discovered that decorin induces endothelial cell autophagy, downstream of VEGFR2. This process was wholly dependent upon Peg3, a decorin-inducible genomically imprinted tumor suppressor gene. However, the signaling cascades responsible have remained elusive. In this report we discovered that Vps34, a class III phosphoinositide kinase, is an upstream kinase required for Peg3 induction. Moreover, decorin triggered differential formation of Vps34/Beclin 1 complexes with concomitant dissolution of inhibitive Bcl-2/Beclin 1 complexes. Further, decorin inhibited anti-autophagic signaling via suppression of Akt/mTOR/p70S6K activity with the concurrent activation of pro-autophagic AMPK-mediated signaling cascades. Mechanistically, AMPK is downstream of VEGFR2 and inhibition of AMPK signaling abrogated decorin-evoked autophagy. Collectively, these findings hint at the complexity of the underlying molecular relays necessary for decorin-evoked endothelial cell autophagy and reveal important therapeutic targets for augmenting autophagy and combatting tumor angiogenesis.

Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

KEYWORDS:

Decorin; IR-A; Proliferation; Signaling

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk