Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arthritis Rheumatol. 2014 May;66(5):1228-36. doi: 10.1002/art.38373.

Lithium protects against cartilage degradation in osteoarthritis.

Author information

  • 1New York University School of Medicine and Hospital for Joint Diseases, New York, New York.

Abstract

OBJECTIVE:

To determine the actions of lithium chloride (LiCl) on catabolic events in human articular chondrocytes, and the effects of LiCl on the progression and severity of cartilage degradation in interleukin-1β (IL-1β)-treated mouse knee joints and after surgical induction of osteoarthritis (OA) in a mouse model.

METHODS:

Human articular chondrocytes were treated with LiCl followed by IL-1β, and the expression levels of catabolic genes were determined by real-time polymerase chain reaction. To understand the mechanism by which LiCl affects catabolic events in articular chondrocytes after IL-1β treatment, the activation of NF-κB was determined using luciferase reporter assays, and the activities of MAPKs and the STAT-3 signaling pathway were determined by immunoblot analysis of total cell lysates. Cultures of mouse femoral head explants treated with IL-1β and a mouse model of surgically induced OA were used to determine the effects of LiCl on proteoglycan loss and cartilage degradation.

RESULTS:

LiCl treatment resulted in decreased catabolic marker messenger RNA levels and activation of NF-κB, p38 MAPK, and STAT-3 signaling in IL-1β-treated articular chondrocytes. Furthermore, LiCl directly inhibited IL-6-stimulated activation of STAT-3 signaling. Consequently, the loss of proteoglycan and severity of cartilage destruction in LiCl-treated mouse knee joints 8 weeks after OA induction surgery or in LiCl-treated mouse femoral head explants after IL-1β treatment were markedly reduced compared to that in vehicle-treated joints or explants.

CONCLUSION:

LiCl reduced catabolic events in IL-1β-treated human articular chondrocytes and attenuated the severity of cartilage destruction in IL-1β-treated mouse femoral head explants and in the knee joints of mice with surgically induced OA, acting via inhibition of the activities of the NF-κB, p38, and STAT-3 signaling pathways.

Copyright © 2014 by the American College of Rheumatology.

PMID:
24470226
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk