Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2014 Jan 22;9(1):e86214. doi: 10.1371/journal.pone.0086214. eCollection 2014.

Protection genes in nucleus accumbens shell affect vulnerability to nicotine self-administration across isogenic strains of adolescent rat.

Author information

  • 1Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
  • 2Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.

Abstract

Classical genetic studies show the heritability of cigarette smoking is 0.4-0.6, and that multiple genes confer susceptibility and resistance to smoking. Despite recent advances in identifying genes associated with smoking behaviors, the major source of this heritability and its impact on susceptibility and resistance are largely unknown. Operant self-administration (SA) of intravenous nicotine is an established model for smoking behavior. We recently confirmed that genetic factors exert strong control over nicotine intake in isogenic rat strains. Because the processing of afferent dopaminergic signals by nucleus accumbens shell (AcbS) is critical for acquisition and maintenance of motivated behaviors reinforced by nicotine, we hypothesized that differential basal gene expression in AcbS accounts for much of the strain-to-strain variation in nicotine SA. We therefore sequenced the transcriptome of AcbS samples obtained by laser capture microdissection from 10 isogenic adolescent rat strains and compared all RNA transcript levels with behavior. Weighted gene co-expression network analysis, a systems biology method, found 12 modules (i.e., unique sets of genes that covary across all samples) that correlated (p<0.05) with amount of self-administered nicotine; 9 of 12 correlated negatively, implying a protective role. PCR confirmed selected genes from these modules. Chilibot, a literature mining tool, identified 15 genes within 1 module that were nominally associated with cigarette smoking, thereby providing strong support for the analytical approach. This is the first report demonstrating that nicotine intake by adolescent rodents is associated with the expression of specific genes in AcbS of the mesolimbic system, which controls motivated behaviors. These findings provide new insights into genetic mechanisms that predispose or protect against tobacco addiction.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk