Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Nucl Med Mol Imaging. 2014 May;41(5):898-905. doi: 10.1007/s00259-013-2668-4. Epub 2014 Jan 25.

Anatomical and functional volume concordance between FDG PET, and T2 and diffusion-weighted MRI for cervical cancer: a hybrid PET/MR study.

Author information

  • 1Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, Liaoning, People's Republic of China.



To evaluate the concordance among (18)F-FDG PET imaging, MR T2-weighted (T2-W) imaging and apparent diffusion coefficient (ADC) maps with diffusion-weighted (DW) imaging in cervical cancer using hybrid whole-body PET/MR.


This study prospectively included 35 patients with cervical cancer who underwent pretreatment (18)F-FDG PET/MR imaging. (18)F-FDG PET and MR images were fused using standard software. The percent of the maximum standardized uptake values (SUV max) was used to contour tumours on PET images, and volumes were calculated automatically. Tumour volumes measured on T2-W and DW images were calculated with standard techniques of tumour area multiplied by the slice profile. Parametric statistics were used for data analysis.


FDG PET tumour volumes calculated using SUV max (14.30 ± 4.70) and T2-W imaging volume (33.81 ± 27.32 cm(3)) were similar (P > 0.05) at 35 % and 40 % of SUV max (32.91 ± 18.90 cm(3) and 27.56 ± 17.19 cm(3) respectively) and significantly correlated (P < 0.001; r = 0.735 and 0.766). The mean DW volume was 30.48 ± 22.41 cm(3). DW volumes were not significantly different from FDG PET volumes at either 35 % SUV max or 40 % SUV max or from T2-W imaging volumes (P > 0.05). PET subvolumes with increasing SUV max cut-off percentage showed an inverse change in mean ADC values on DW imaging (P < 0.001, ANOVA).


Hybrid PET/MR showed strong volume concordance between FDG PET, and T2-W and DW imaging in cervical cancer. Cut-off at 35 % or 40 % of SUV max is recommended for (18)F-FDG PET/MR SUV-based tumour volume estimation. The linear tumour subvolume concordance between FDG PET and DW imaging demonstrates individual regional concordance of metabolic activity and cell density.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk