Send to:

Choose Destination
See comment in PubMed Commons below
Philos Trans R Soc Lond B Biol Sci. 2014 Jan 20;369(1637):20120459. doi: 10.1098/rstb.2012.0459. Print 2014 Mar 5.

What is all the noise about in interval timing?

Author information

  • 1Department of Physics and Astronomy, College of Charleston, , 66 George Street, Charleston, SC 29624, USA.


Cognitive processes such as decision-making, rate calculation and planning require an accurate estimation of durations in the supra-second range-interval timing. In addition to being accurate, interval timing is scale invariant: the time-estimation errors are proportional to the estimated duration. The origin and mechanisms of this fundamental property are unknown. We discuss the computational properties of a circuit consisting of a large number of (input) neural oscillators projecting on a small number of (output) coincidence detector neurons, which allows time to be coded by the pattern of coincidental activation of its inputs. We showed analytically and checked numerically that time-scale invariance emerges from the neural noise. In particular, we found that errors or noise during storing or retrieving information regarding the memorized criterion time produce symmetric, Gaussian-like output whose width increases linearly with the criterion time. In contrast, frequency variability produces an asymmetric, long-tailed Gaussian-like output, that also obeys scale invariant property. In this architecture, time-scale invariance depends neither on the details of the input population, nor on the distribution probability of noise.


interval timing; noise; striatal beat frequency

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk