Format

Send to:

Choose Destination
See comment in PubMed Commons below
Brain Connect. 2014 Mar;4(2):112-30. doi: 10.1089/brain.2013.0183.

Relations between the geometry of cortical gyrification and white-matter network architecture.

Author information

  • 1School of Physics, University of Sydney , Sydney, New South Wales, Australia .

Abstract

A geometrically based network model of cortico-cortical white-matter connectivity is used in combination with diffusion spectrum MRI (DSI) data to show that white-matter cortical network architecture is founded on a homogeneous, isotropic geometric connection principle. No other special information about single connections or groups of connections is required to generate networks very similar to experimental ones. This model provides excellent agreement with experimental DSI frequency distributions of network measures-degree, clustering coefficient, path length, and betweenness centrality. In the model, these distributions are a result of geometrically induced spatial variations in the values of these measures with deep nodes having more hublike properties than superficial nodes. This leads to experimentally testable predictions of corresponding variations in real cortexes. The convoluted geometry of the cortex is also found to introduce weak modularity, similar to the lobe structure of the cortex, with the boundaries between modules having hublike properties. These findings mean that some putative discoveries regarding the structure of white-matter cortical networks are simply artifacts and/or consequences of geometry. This model may help provide insight into diseases associated with differences in gyrification as well as evolutionary development of the cortex.

PMID:
24437717
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk