Display Settings:

Format

Send to:

Choose Destination
Nucleic Acids Res. 2014 Mar;42(5):2856-69. doi: 10.1093/nar/gkt1338. Epub 2013 Dec 24.

Computational analysis reveals a correlation of exon-skipping events with splicing, transcription and epigenetic factors.

Author information

  • 1Departments of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, Department of Molecular and Cellular Biochemistry and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA, Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Rockville, MD 20852, USA and Deparment of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.

Abstract

Alternative splicing (AS), in higher eukaryotes, is one of the mechanisms of post-transcriptional regulation that generate multiple transcripts from the same gene. One particular mode of AS is the skipping event where an exon may be alternatively excluded or constitutively included in the resulting mature mRNA. Both transcript isoforms from this skipping event site, i.e. in which the exon is either included (inclusion isoform) or excluded (skipping isoform), are typically present in one cell, and maintain a subtle balance that is vital to cellular function and dynamics. However, how the prevailing conditions dictate which isoform is expressed and what biological factors might influence the regulation of this process remain areas requiring further exploration. In this study, we have developed a novel computational method, graph-based exon-skipping scanner (GESS), for de novo detection of skipping event sites from raw RNA-seq reads without prior knowledge of gene annotations, as well as for determining the dominant isoform generated from such sites. We have applied our method to publicly available RNA-seq data in GM12878 and K562 cells from the ENCODE consortium and experimentally validated several skipping site predictions by RT-PCR. Furthermore, we integrated other sequencing-based genomic data to investigate the impact of splicing activities, transcription factors (TFs) and epigenetic histone modifications on splicing outcomes. Our computational analysis found that splice sites within the skipping-isoform-dominated group (SIDG) tended to exhibit weaker MaxEntScan-calculated splice site strength around middle, 'skipping', exons compared to those in the inclusion-isoform-dominated group (IIDG). We further showed the positional preference pattern of splicing factors, characterized by enrichment in the intronic splice sites immediately bordering middle exons. Finally, our analysis suggested that different epigenetic factors may introduce a variable obstacle in the process of exon-intron boundary establishment leading to skipping events.

PMID:
24369421
[PubMed - indexed for MEDLINE]
PMCID:
PMC3950716
Free PMC Article

Images from this publication.See all images (9)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk