Robust and Efficient Regularized Boosting Using Total Bregman Divergence

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2011 Dec 31:2011:10.1109/CVPR.2011.5995686. doi: 10.1109/CVPR.2011.5995686.

Abstract

Boosting is a well known machine learning technique used to improve the performance of weak learners and has been successfully applied to computer vision, medical image analysis, computational biology and other fields. A critical step in boosting algorithms involves update of the data sample distribution, however, most existing boosting algorithms use updating mechanisms that lead to overfitting and instabilities during evolution of the distribution which in turn results in classification inaccuracies. Regularized boosting has been proposed in literature as a means to overcome these difficulties. In this paper, we propose a novel total Bregman divergence (tBD) regularized LPBoost, termed tBRLPBoost. tBD is a recently proposed divergence in literature, which is statistically robust and we prove that tBRLPBoost requires a constant number of iterations to learn a strong classifier and hence is computationally more efficient compared to other regularized Boosting algorithms. Also, unlike other boosting methods that are only effective on a handful of datasets, tBRLPBoost works well on a variety of datasets. We present results of testing our algorithm on many public domain databases and comparisons to several other state-of-the-art methods. Numerical results show that the proposed algorithm has much improved performance in efficiency and accuracy over other methods.