Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Gastroenterology. 2014 Mar;146(3):726-35. doi: 10.1053/j.gastro.2013.11.049. Epub 2013 Dec 4.

Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease.

Author information

  • 1Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas.
  • 2Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas.
  • 3Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas.
  • 4Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas. Electronic address: Parksej@missouri.edu.

Abstract

BACKGROUND & AIMS:

There have been few studies of the role of de novo lipogenesis in the development of nonalcoholic fatty liver disease (NAFLD). We used isotope analyses to compare de novo lipogenesis and fatty acid flux between subjects with NAFLD and those without, matched for metabolic factors (controls).

METHODS:

We studied subjects with metabolic syndrome and/or levels of alanine aminotransferase and aspartate aminotransferase >30 mU/L, using magnetic resonance spectroscopy to identify those with high levels (HighLF, n = 13) or low levels (LowLF, n = 11) of liver fat. Clinical and demographic information was collected from all participants, and insulin sensitivity was measured using the insulin-modified intravenous glucose tolerance test. Stable isotopes were administered and gas chromatography with mass spectrometry was used to analyze free (nonesterified) fatty acid (FFA) and triacylglycerol flux and lipogenesis.

RESULTS:

Subjects with HighLF (18.4% ± 3.6%) had higher plasma levels of FFAs during the nighttime and higher concentrations of insulin than subjects with LowLF (3.1% ± 2.7%; P = .04 and P < .001, respectively). No differences were observed between groups in adipose flux of FFAs (414 ± 195 μmol/min for HighLF vs 358 ± 105 μmol/min for LowLF; P = .41) or production of very-low-density lipoprotein triacylglycerol from FFAs (4.06 ± 2.57 μmol/min vs 4.34 ± 1.82 μmol/min; P = .77). In contrast, subjects with HighLF had more than 3-fold higher rates of de novo fatty acid synthesis than subjects with LowLF (2.57 ± 1.53 μmol/min vs 0.78 ± 0.42 μmol/min; P = .001). As a percentage of triacylglycerol palmitate, de novo lipogenesis was 2-fold higher in subjects with HighLF (23.2% ± 7.9% vs 10.1% ± 6.7%; P < .001); this level was independently associated with the level of intrahepatic triacylglycerol (r = 0.53; P = .007).

CONCLUSIONS:

By administering isotopes to subjects with NAFLD and control subjects, we confirmed that those with NAFLD have increased synthesis of fatty acids. Subjects with NAFLD also had higher nocturnal plasma levels of FFAs and did not suppress the contribution from de novo lipogenesis on fasting. These findings indicate that lipogenesis might be a therapeutic target for NAFLD.

Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

KEYWORDS:

Diabetes; Fatty Acid Kinetics; Lipid Metabolism; Obesity

PMID:
24316260
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk