Format

Send to:

Choose Destination
See comment in PubMed Commons below
Front Neurosci. 2013 Nov 21;7:223. doi: 10.3389/fnins.2013.00223. eCollection 2013.

Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor.

Author information

  • 1Department of Information Technology and Electrical Engineering, Institute of Neuroinformatics, UNI-ETH Zurich Zurich, Switzerland.

Abstract

Conventional vision-based robotic systems that must operate quickly require high video frame rates and consequently high computational costs. Visual response latencies are lower-bound by the frame period, e.g., 20 ms for 50 Hz frame rate. This paper shows how an asynchronous neuromorphic dynamic vision sensor (DVS) silicon retina is used to build a fast self-calibrating robotic goalie, which offers high update rates and low latency at low CPU load. Independent and asynchronous per pixel illumination change events from the DVS signify moving objects and are used in software to track multiple balls. Motor actions to block the most "threatening" ball are based on measured ball positions and velocities. The goalie also sees its single-axis goalie arm and calibrates the motor output map during idle periods so that it can plan open-loop arm movements to desired visual locations. Blocking capability is about 80% for balls shot from 1 m from the goal even with the fastest-shots, and approaches 100% accuracy when the ball does not beat the limits of the servo motor to move the arm to the necessary position in time. Running with standard USB buses under a standard preemptive multitasking operating system (Windows), the goalie robot achieves median update rates of 550 Hz, with latencies of 2.2 ± 2 ms from ball movement to motor command at a peak CPU load of less than 4%. Practical observations and measurements of USB device latency are provided.

KEYWORDS:

AER; address-event representation; asynchronous vision sensor; high frame rate; high-speed visually guided robotics; neuromorphic system; soccer

PMID:
24311999
[PubMed]
PMCID:
PMC3836084
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers Media SA Icon for PubMed Central
    Loading ...
    Write to the Help Desk