Diallel and generation means analyses for the components of resistance to Cercospora arachidicola in peanut

Theor Appl Genet. 1986 Dec;73(2):228-35. doi: 10.1007/BF00289279.

Abstract

The inheritance of the components of partial resistance to Cercospora arachidicola Hori in peanut (Arachis hypogaea L.) was examined in two five-parent diallels and in the six generations of two single crosses in greenhouse tests. The Griffing (1956) analysis indicated general combining ability (GCA) to be of most importance, yet large ratios of SCA/GCA sum of squares suggested nonadditive genetic variance as well. Reciprocal effects were found for lesion area and lesion number/10 cm(2) leaf area. The importance of nonadditive genetic variance was substantiated by the lack of fit for the additive-dominance model in the Hayman's analysis (1954 a, b). Further evidence from the Hayman's analysis indicated that epistasis may be important in determining the inheritance of some of the components of resistance. Additive gene effects alone accounted for the genetic variability observed among the generation means from two single crosses for all components of resistance except latent period. There was evidence that epistasis was an important mode of gene action for the inheritance of latent period.