Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Invest Ophthalmol Vis Sci. 2014 Jan 3;55(1):55-63. doi: 10.1167/iovs.13-13026.

Enzymatic degradation identifies components responsible for the structural properties of the vitreous body.

Author information

  • 1Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri.

Abstract

PURPOSE:

Vitreous degeneration contributes to several age-related eye diseases, including retinal detachment, macular hole, macular traction syndrome, and nuclear cataracts. Remarkably little is understood about the molecular interactions responsible for maintaining vitreous structure. The purpose of this study was to measure the structural properties of the vitreous body after enzymatic degradation of selected macromolecules.

METHODS:

Mechanical properties of plugs of bovine and porcine vitreous were analyzed using a rheometer. Oscillatory and extensional tests measured vitreous stiffness and adhesivity, respectively. Major structural components of the vitreous were degraded by incubation overnight in collagenase, trypsin, or hyaluronidase, singly or in combination. Vitreous bodies were also incubated in hyper- or hypotonic saline. Effects of these treatments on the mechanical properties of the vitreous were measured by rheometry.

RESULTS:

Enzymatic digestion of each class of macromolecules decreased the stiffness of bovine vitreous by approximately half (P < 0.05). Differential effects were observed on the damping capacity of the vitreous (P < 0.05), which was shown to correlate with material behavior in extension (P < 0.01). Digestion of hyaluronan significantly decreased the damping capacity of the vitreous and increased adhesivity. Collagen degradation resulted in the opposite effect, whereas digestion of proteins and proteoglycans with trypsin did not alter behavior relative to controls. Osmotic perturbations and double-enzyme treatments further implicated hyaluronan and hyaluronan-associated water as a primary regulator of adhesivity and material behavior in extension.

CONCLUSIONS:

Collagen, hyaluronan, and proteoglycans act synergistically to maintain vitreous stiffness. Hyaluronan is a key mediator of vitreous adhesivity, and mechanical damping is an important factor influencing dynamic vitreous behavior.

KEYWORDS:

dynamic mechanical analysis; enzymatic vitreolysis; liquefaction; mechanical properties; ocular biomechanics; vitreous; vitreous degeneration

PMID:
24222300
[PubMed - indexed for MEDLINE]
PMCID:
PMC3883120
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk