Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013 Oct 25;8(10):e77926. doi: 10.1371/journal.pone.0077926. eCollection 2013.

Enhancement of Cerenkov luminescence imaging by dual excitation of Er(3+),Yb(3+)-doped rare-earth microparticles.

Author information

  • 1Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China.

Abstract

Cerenkov luminescence imaging (CLI) has been successfully utilized in various fields of preclinical studies; however, CLI is challenging due to its weak luminescent intensity and insufficient penetration capability. Here, we report the design and synthesis of a type of rare-earth microparticles (REMPs), which can be dually excited by Cerenkov luminescence (CL) resulting from the decay of radionuclides to enhance CLI in terms of intensity and penetration.

METHODS:

Yb(3+)- and Er(3+)- codoped hexagonal NaYF4 hollow microtubes were synthesized via a hydrothermal route. The phase, morphology, and emission spectrum were confirmed for these REMPs by power X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectrophotometry, respectively. A commercial CCD camera equipped with a series of optical filters was employed to quantify the intensity and spectrum of CLI from radionuclides. The enhancement of penetration was investigated by imaging studies of nylon phantoms and nude mouse pseudotumor models.

RESULTS:

the REMPs could be dually excited by CL at the wavelengths of 520 and 980 nm, and the emission peaks overlaid at 660 nm. This strategy approximately doubled the overall detectable intensity of CLI and extended its maximum penetration in nylon phantoms from 5 to 15 mm. The penetration study in living animals yielded similar results.

CONCLUSIONS:

this study demonstrated that CL can dually excite REMPs and that the overlaid emissions in the range of 660 nm could significantly enhance the penetration and intensity of CL. The proposed enhanced CLI strategy may have promising applications in the future.

PMID:
24205030
[PubMed - indexed for MEDLINE]
PMCID:
PMC3808356
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk