RFLP variation in diploid and tetraploid alfalfa

Theor Appl Genet. 1991 Nov;83(1):89-96. doi: 10.1007/BF00229230.

Abstract

Alfalfa (Medicago sativa L.) is a major forage crop throughout the world. Although alfalfa has many desirable traits, continued breeding is required to incorporate pest resistances and other traits. We conducted this study to determine the amount of restriction fragment length polymorphism (RFLP) variability present within and between diploid and tetraploid alfalfa populations, and whether or not this variability is sufficient for construction of an RFLP map. Diploid plants from M. sativa ssp. falcata, ssp. coerulea, and ssp. sativa and tetraploid spp. sativa cultivars 'Apollo,' 'Florida 77,' and 'Spredor 2' were included. A total of 19 cDNA clones was probed onto genomic Southern blots containing DNA digested by EcoRI, HindIII, or BamHI. Phylogenetic trees were produced, based on parsimony analysis of shared restriction fragments. Evidence for extensive gene duplication was found; most probes detected complex patterns of restriction fragments. Large amounts of variation are present within all diploid subspecies. M. sativa ssp. falcata plants formed clusters distinct from ssp. sativa or ssp. coerulea plants, which were not distinctly clustered. Some M. sativa ssp. falcata plants were more similar to the other groups than to other plants within ssp. falcata. Variation among tetraploid cultivars showed that Florida 77 and Apollo had more similarities than either showed with Spredor 2. All three cultivars showed large within-population variation, with Apollo being the most diverse and Spredor 2 the least. Based on these results, development of an RFLP map at the diploid level appears possible. Also, differentiation of cultivars, particularly ones of divergent origin, seems possible based on RFLP patterns.